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LIQUD CRYSTALS, 1996, VOL. 21, No. 6, 791-799 

The magnetic field-induced deformations in nematic layers with 
non-zero splay-bend elastic constant 

by GRZEGORZ DERFEL 
Technical University of Lodi, Institute of Physics, ul. Wolczanska 223, 

93-005 Lodi, Poland 

(Received 14 July 1995; i n j n a l  form 22 February IYY6; accepted 7 July 1996) 

The magnetic field-induced deformations of weakly anchored nematic layers in the presence 
of the non-zero splay-bend elastic constant k,, are analysed by use of the Pergamenshchik 
approach. Most of the anomalous phenomena reported by other authors, that do not occur 
if k,, = 0, have been confirmed. New effects suitable for experimental verification are predicted: 
the discontinuous transition with hysteresis between the uniform undistorted state and the 
state uniformly aligned along the field, and the rotation of the director in the tilted layer 
during continuous increase and decrease of the perpendicular field. 

1. Introduction 
The splay-bend term, which was reinstated into the 

Frank elastic free energy density of the nematic liquid 
crystal by Nehring and Saupe [l], causes well known 
problems [2,3]. The functional of the total free energy 
including this term has no minimum, so the director 
distribution cannot be found by means of the vari- 
ational method. The problem was referred to as the ‘ill- 
posed’, and two different approaches which allow one 
to by-pass the mathematical difficulties have been 
proposed. Barber0 et al. [4] generalized the Frank 
theory of elasticity by addition of a term of the fourth 
order in the director derivatives. As a result, the free 
energy functional possesses a minimum. This approach 
is referred to as the ‘second order’ elastic theory. It is 
rather troublesome for practical use, since 35 new 
elastic constants are required for the full expression of 
the second order free energy density. The approximate 
approach with only one bulk second order elastic 
constant predicts extremely strong sub-surface distor- 
tions which cause some other problems [3]. According 
to the other approach, proposed by Pergamenshchik 
[2], the director distribution should be searched in the 
class of continuous solutions of the Euler-Lagrange 
equation related to the first order elastic free energy, 
i.e. to the Frank expression. Several proposals for the 
experimental verification of these two theories have 
been made [3,5]. The situations, for which both 
theories predict the qualitatively different behaviours, 
not simply quantitatively different results, would be 
especially worthy of experimental examination. The 
effects predicted by the second ordei theory should 
take place on the molecular scale length and are 

practically inaccessible to standard experimental 
methods. Any experiment would give results which 
could be interpreted, without any surface-like elastic 
constants, by the use of suitably fitted anchoring energy 
and surface alignment direction. On the other hand, 
some spectacular unexpected effects were predicted on 
the basis of the first order approach. They concern a 
weakly anchored nematic layer deformed by a magnetic 
field. (The angle 6 mentioned below describes the 
director distribution in the layer. It depends on the 
coordinate z measured perpendicular to the layer plane.) 

(i) Spontaneous deformation can take place in the 
absence of the field [ 61. 

(ii) Under the action of the field, the spontaneous 
deformation transforms into the anomalous 
structure described by the odd O(z) function and 
is finally suppressed [ 61. 

(iii) The usual deformation, described by the even 
O(z) function, can be suppressed by an increasing 
field [6]. 

(iv) The magnetic field directed parallel to the easy 
axis deforms the director distribution [ 31. 

(v) The orientation of the director adjacent to the 
boundary surfaces remains unperturbed, in spite 
of the action of the field, only if the field vector 
makes some special angle with the surface easy 
axis [ 31. 

In the present paper, the behaviour of the nematic 
liquid crystal in the magnetic field is reanalysed in terms 
of the Pergamenshchik approach. The effects mentioned 
above were confirmed, with the exception of (iii) and 

0267-8292/96 $12.00 0 1996 Taylor & Francis Ltd. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



792 G. Derfel 

(v). Some other anomalous features of behaviour were 
found: 

(vi) Deformation in the magnetic field perpendicular 
to the tilted easy axis arises without threshold. 

(vii) Discontinuous transition with hysteresis occurs 
between the undeformed state and the structure 
totally aligned along the field. 

(viii) The director rotates during repeated increases 
and decreases of the field. 

(ix) The asymmetric deformations are typical for 
arbitrary field directions and surface orientations. 

Experimental evidence for these effects would confirm 
the Pergamenshchik theory, whereas the absence of these 
effects could be interpreted as favouring the second 
order theory 

In s 2  of this paper, the assumptions concerning the 
system are precisely stated, and the method of analysis 
is described. Section 3 presents the results. The condi- 
tions leading to spontaneous deformation in the absence 
of the field are found, and threshold type deformations 
occurring in special cases are described. The variety 
of effects taking place in some particular geometries 
are also exemplified. The results are summarized and 
discussed in $4. 

2. Assumptions and method 
The nematic liquid crystal, characterized by elastic 

constants k,, = k,, = k ,  k,, = k I 3 / k  and by a small posit- 
ive diamagnetic anisotropy Ax, is confined between two 
plates positioned at z = ? d /2  parallel to the xy plane as 
shown in figure 1. The director n lies in the y z  plane and 
makes an angle 0(z) with the z axis. The surface 
anchoring energy is finite and described by the Rapini- 
Papoular formula 

Fanchoring = ~Csin’ (0, - P )  + sin’ (02 - PI1 ( 1) 
where y measures the energy of the surface interaction 
per unit area, 8, = 8(-d /2) ,  0’ = 0 ( + d / 2 )  and is the 
angle between the easy axis of the surface alignment e 
and the z axis. The bias magnetic field of strength H lies 
in the y z  plane and makes the angle r with the y axis. 

tZ  

d’2*y 0 

- dl2 

Figure 1. The geometry of the system. 

The total free energy per unit area of the layer is 
expressed by: 

t ])[sin2 (0, - b)  + sin’ (0, - p)]  

After some substitutions and abbreviations: 

this expression takes the form: 

- k,, U[S:,, sin 2(6, + a) - 6L,l sin 2(S, + a)] (4) i 
where the indices 1 and 2 refer to z = - d / 2  and to z = 

d/2,  respectively. According to the Pergamenshchik 
approach, the director distribution function 6(u) should 
be searched in the class of the continuous functions 
which satisfy the Euler-Lagrange equation applied to 
the Frank part of the free energy. The parameters which 
specify the director distribution, i.e. the particular values 
of the integration constants, are calculated by minimiza- 
tion of the free energy function F obtained when S(u) is 
substituted into the expression (4). Various ksb values 
were used during the numerical computations, since the 
experimental [ 7,8] and theoretical [ 1,9, I0 J estimations 
are widely scattered. 

3. Results 
By use of the substitution 6 = 0 - a ,  the Euler- 

Lagrange equation writes: 

a28 
- + sin 6 cosS = 0 
dll’ 

( 5 )  

The general solution of this equation is 

6 = arcsin { [sn (u - uo. c) cos ( p  - a)(c’ - sin2 ( p  - 
+ s i n ( f ) ~ a ) c n ( u ~ u , , c j d n ( u - u , , c ) ]  

x [ 1 - sin’ Cp - a) sn’ (u  - uo, c)]-‘ } (6)  
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Dejormations of a nematic with k,, # 0 793 

for c < 1, and Euler-Lagrange equation 

6 = arcsin {[sn (c(u - uo),  f )  

+ sin (P - a) cn c(u - uo), - dn c(u - ( :I( uoh ‘)1 C 

for c 2 1. In (6) and (7), cn, dn and sn are the elliptic 
Jacobian functions [ l l ] ,  whereas c and uo denote the 
integration constants. Their physical meaning is as 
follows: 

uo = nhio (8) 

where co is the reduced coordinate for which B = 8, i.e. 
6 = p - a ,  and 

cz = 6:’(u0) + sin’ (a - P )  (9) 

If c d 1, it can be identified with 

c = sin 6,, (10) 

where 6, is the extreme value of 6. (The details of 
integration are given in the Appendix.) In general, the 
solutions (6) and (7) represent the fully asymmetric 
distribution. However, in special cases, the 6(u) functions 
are even or odd, describing symmetric or antisymmetric 
director distributions, respectively. 

3.1. Zero-jield director distribution 
In the absence of the field, the quantity u - uo equals 

zero. Two types of zero-field director distributions are 
possible. The solution (6) gives 6 = P - a, i.e. B = 0, since 
sn(O,c)=O and cn(O,c)=dn(O,c)= 1. The director dis- 
tribution is uniform and parallel to the surface easy axis. 
Equation (7)  gives a solution of a different type, provided 
that c tends to infinity, assuring that c(u - uo) = p([ - io) 
remains finite when h tends to zero: 

6 = P ( i  - (0) + P - a (11) 

or 

where the following properties of the Jacobian functions 
were used: sn (u - uo, 0) = sin (u - uo), cn (u - uo, 0) = 

cos (u - uo) and dn (u - uo, 0) = 1. The quantity p = nhc 
tends to in this limit. The linear B ( i )  depend- 
ence is consistent with the solution of the zero-field 

d26 
dz’ - 
_-  

With application of the formula (1  I), the expression 
for the free energy (4) reduces to 

F = k  d 2  {g + g [ sin’( p (i + lo)) + sin‘( p (1 - (.))I 
- k,,P sin P cos 2(P - Pi01 (14) 

If ksb = 0, then the value p = 0 yields the minimum free 
energy F = 0, and B equals P everywhere. (The i0 value 
is not specified in such a case.) The minimum existing 
for p = 0 changes into the maximum if 

1 + g - 2kS,cos2p < 0. (15) 
This means that if ksb > ( 1 + g)/2 cos 28 for 0 < P < n/4 
or k,, < - ( 1 + g)/2 cos 2P for n/4 < P < n/2, the min- 
imum for p # 0 can appear. The numerically obtained 
example of such a distorted structure is shown in figure 2. 

The structures which develop in the increasing field 
correspond to one of the two types of solutions men- 
tioned above. The examples of such behaviour are 
presented below. 

3.2. Deformations in the magnetic jield perpendicular to 
the easy axis 

If H I e, i.e. f i  - a = 0, then solutions ( 6 )  and (7) reduce 

(16) 

(17) 
respectively. These functions can represent the symmetric 
and antisymmetric director distributions. The numerical 

to: 

6 = arcsin (c sn (u - uo, c)) 

6 = arcsin (sn (c(u - uo), l /c))  

and 

0 . 4 1  

Figure 2. The director distribution in the homeotropic layer 
( p  = 0) deformed by the field H l e  (a = 0 )  calculated for 
ksb = 1.1 and g = 1 .  The values of U are 0, 0.5, 0.6, 0.67 
and 0.69 (in order from the highest slope to the lowest). 
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794 G. Derfel 

minimization performed for various parameters proved 
the existence of each type of solution. The solution 
which is due to the lower free energy is 
realized. For 1 + g - 2kSb cos 28 > 0 only the sym- 
metric solution occurs, and in the opposite case the 
antisymmetric solution is possible. 

The symmetric solution arises if ti,,= +K(c)  is used 
in equation (16), where K(c)  is the real quarter-period 
of the Jacobian elliptic functions given by the complete 
elliptic integral of the first kind, 

( 1 - c2 sin2 q ~ )  ~ li2dqI. 

Due to the properties of the Jacobian functions, the even 
solution can be written in the form 

which is identical with the solution given in 1121. 
Figure 3 presents the symmetric director distribution for 
several field values. In weakly anchored layers, the 
intrinsic curvature stiffness of the nematic liquid crystal 
with small or negative k,b does not allow for strong 
deformations and the director distribution is relatively 
flat in comparison to the strong anchoring case. 

The antisymmetric solution arises if uo = 0 is 
substituted into (16): 

6 = arcsin (c sn (u, c)) 

6 = arcsin (sn (cu, l/c)) 

( 1 9 )  

(20) 

The solution of this kind was predicted in [6]. The 
examples of the antisymmetric distributions for several 
field strengths are shown in figure 2. The 6(z)  functions 
describing them are practically linear 

or into (17) 

3.2.1. Threshold-type deformations 
Planar and homeotropic layers, which are uniform in 

the absence of the field, remain undistorted until the 
field reaches some threshold strength U,. Another 
threshold field, U,,  is the limiting value, above which 

I 
-0.5 0 0.5 < 

Figure 3. The director distribution in the homeotropic layer 
( f i  = 0) deformed by the field H l e  (a = 0) calculated for 
k,, = 0.1 and g = 2. The values of U are 1.2, 1.3, 1.4, 1.5 
and 1-7 (in order from the lowest curve to the highest). 

the layer is uniformly oriented along the field and n I /  H 
applies everywhere. 

If the zero-field structure is linearly deformed (due to 
the suitable k,, value), then this spontaneous deforma- 
tion decays gradually under the action of the field and 
disappears at some threshold magnetic field strength U,, 
above which the uniform structure n / / e  is stable. The 
relations between all three thresholds depend on the 
ksb value. 

As the values of uo are unambiguously defined for the 
symmetric and antisymmetric solutions considered here, 
the free energy function, obtained by substitution of a 
suitable solution (18), (19) or (20) into formula (4). 
depends only on c. The uniform director distribution. 
described by 6 = /I - LY = 0 and determined by equa- 
tion (18) when c=O, satisfies the condition for the 
extremum of the free energy aF/ac/,,, = 0. Therefore its 
stability is determined by the sign of i32F:/i3c21c=o. In the 
following, the homeotropic layer, ( p  = 0)- will be 
considered. 

The undeformed uniform state is stable at low fields 
since i32F/i3c21c=o > 0. The threshold El is determined by 
the equation 

c?2F iac2 /c=o  = o (21 1 

which takes a form 

(2k,b - l)Ul sin 2U, + 2gcos’ U ,  = 0 (22) 

It has many solutions determined by 

U ,  =7t(2n+1)/2 where n=O, i1 ,?2 ,+3 . . .  
(23) 

and by 

u, =- c o t u ,  (24) 1 - 2k,b 

but only the lowest positive value obtained for given g 
and k,, has the sense of the threshold. It is thus given 
by (24) for k,b < 0.5 and equals 7t/2 for k,b > 0.5. 

The uniform state, aligned parallel to the field is 
described by 6 = arcsin c = x/2, and IS determined by 
equation (18) when c = 1. It is useful to analyse its 
stability by means of a2F/i36k. This state is unstable at 
sufficiently low fields and becomes stable above the 
threshold determined by the equation 

a2F/ad: 1 s , = r r / 2  = 0 (25)  

which has a form 

( 1 + 2ksb)U2 sinh U ,  - 2g C O S ~ ’  U ,  = 0 ( 2 6 )  

or 

u - _ _ _ ~  coth U ,  
1 + 2 k s b  2 -  
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Deformations of a nematic with k,, # 0 795 

Equations (24) and (27) are the generalized version of 
the threshold conditions calculated in [ 121 for ksb = 0. 

The linearly deformed zero-field state, existing if 
k,, > ( 1  + g)/2, decays continuously and transforms into 
the uniform state n 11 e above the threshold given by the 
formula derived from (21) 

( 1 - 2k,b)U3 sin 2U3 + 2g sin’ U ,  = 0 (28) 
or 

The thresholds obtained from (24), (27) and (29) are 
plotted in figure 4 as functions of ksb for several values 
of g. Two relations between U ,  and U2 are possible. If 
k,, is sufficiently small or negative then U ,  < U,. The 
transition between the two uniform states is continuous 
and has the form shown in figures 5 and 6. For somewhat 
higher ksb, the transition is discontinuous with hysteresis 
as shown in figure 7. 

d2 

1 .o 1.5 2.0 
U 

The stationary states of the homeotropic layer (/l= 
0) subjected to the magnetic field H l e  ( a  = O ) .  The mid- 
plane angle 8, is plotted as a function of U for ksb = 0.1 
and g = 2. The full line denotes the minima of the free 
energy whereas the dotted lines denote the maxima. 

Figure 5. 

U 

Figure 6. The stationary states of the homeotropic layer (/I = 
0) subjected to the magnetic field H l e  ( a  = 0). The mid- 
plane angle 0, is plotted as a function of U for ksb = -0.2 
and g =  1. The full line denotes the minima of the free 
energy whereas the dotted lines denote the maxima. 

0.5 1 .o 1.5 
U 

Figure 7. The stationary states of the homeotropic layer ( p  = 
0) subjected to the magnetic field H l e  (a = 0). The mid- 
plane angle 0, is plotted as a function of U for k,, = 0.6 
and g =  1. The full lines denote the minima of the free 
energy whereas the dotted line denotes the maxima. 

The decay of the spontaneous deformation occurring 
if the inequality (15) is satisfied, is illustrated in figures 2 
and 8. If the field is increased further, then above U ,  = 

n/2, the discontinuous transition to the state n 11 H occurs 
(not shown in the figures). This state is stable in the 
decreasing field until the threshold U, is reached, below 
which the layer returns to the linear deformation. 

Figure 9 shows the boundary lines separating three 
regions in the (g, ksb) plane. In the region A, U ,  is lower 
than U2,  whereas in the regions B and C the opposite 
relation occurs. The smaller the actual value of ksb, the 
weaker must be the surface anchoring (or the thinner 
must be the layer) in order to detect the anomalous 

0 0.5 1 
U 

Figure 8. The decay of the linear deformation presented in 
figure 2. The stationary states are determined by the 
spatial angle derivative p = 19;li=,, plotted as a function 
of u. 
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796 G. Derfel 

Figure 9. The ranges of ksb and g leading to different proper- 
ties of the layer. A is the continuous transition between 
the n 11 e and n 11 H states; B is the discontinuous transition 
with hysteresis; C is the spontaneous deformation in the 
absence of the field. 

hysteresis. In the region C the linear zero-field 
deformation is possible. 

The properties of the planar layers, ( p  =n/2),  are 
analogous; however the sign before ksb should be 
changed in the formulae presented above and in the 
figures mentioned. 

3.2.2. Deformations in oblique fields H l e  
I t  is known, that if k,,=0, the deformation has a 

threshold character for any p, provided H l e  [13, 141. 
However if k,,#O, the behaviour of the system is 
different. Figures 10 and 11 show the deformations of 
the tilted layer with relatively low ksb values subjected 
to the oblique field H l e .  The deformation is thresh- 
oldless. The director distribution is symmetrical. An 
interesting phenomenon can be noticed, namely that 
rotation of the director takes place if the field is repeat- 
edly increased and decreased, as shown schematically in 
figure 12. 

The case of high k,, values, when the initial linear 
distribution is deformed, is illustrated in figure 13. The 
asymmetric distribution decays and transforms gradually 

1 .o 1 5  
U 

Figure 10. The stationary states of the tilted layer ( p  = -0.1) 
subjected to the oblique magnetic field H l e  (a = -0.1). 
The mid-plane angle 8, is plotted as a function of U for 
k,, = 0.1 and g = 2. Full lines denote the minima of the 
free energy whereas the dotted lines denote the maxima. 

1..-, 0 0 5  1 .o 1 5  

U 

Figure 11. The stationary states of the tilted layer ( p  = -0.2) 
subjected to the oblique magnetic field H l e  (2 = -0.2). 
The mid-plane angle 8, is plotted as a function of U for 
ksb = 0.6 and g = 1. Full lines denote the minima of the 
free energy whereas the dotted lines denote the maxima. 

0 c--/. _/= 

0.5 1 .o 1.5 
U 

Figure 12. The possibility of director rotation in the tilted 
layer ( p  = -0.2) subjected to the repeatedly increasing 
and decreasing oblique magnetic field H l e  ( r  = -0.2). 
Only the minima of the free energy are shown, k,, = 0.6 
and g =  1. 

into the symmetric one. The high field deformation has 
a different character from that shown in figure 3: 
the layer is strongly distorted, probably due to the high 
ksb value, which favours director curvature in the 
boundary regions. 

3.3. Deformations in a parallel field H / I  e 
If H 1 1  e, i.e. /I - x = n/2, then c 2 1, which is evident 

from equation (9). The solution (7) reduces to 

cn (c(u - uo), l jc)  
dn (c(u - uo), l/c) 

6 = arcsin 

The field parallel to the surface easy axis does not 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Deformations of a nematic with k,, # 0 797 

-0.41 4 
0.2- 

-0.5 0 -  0.5 
la 

Figure 13. The director distribution in the tilted layer (p=  
0-1) deformed by the oblique field H l e  (a = 0.1) calcu- 
lated for ksb = 1.1 and g = 1. (a) The decay in the asymmet- 
ric deformations with increasing field (the values of U are 
0.1,0.4, 0.5 and 0.6, in order from the highest slope to the 
lowest); (b) development of the symmetric deformations 
with increasing field (the values of U are 0.7, 1.5, 2.0, 2.5 
and 3.0, in order from the highest curve to the lowest. 

induce any deformation if the inequality (15) is not 
satisfied. In the opposite case, the initial linear distribu- 
tion is distorted as shown in figure 14. The surface 
director deviates from e even in high fields, whereas the 
orientation n I/ H prevails in the bulk in agreement with 
predictions of [ 31. 

3.4. Deformations of the tilted layers in oblique jields 
In figure 15 the influence of the field directed at the 

special angle calculated in [3] is shown. The deformed 
structure is almost uniform and finally the director 
becomes parallel to the external field at relatively low 
field strength. Hysteresis is present. 

Figures 16(a) and 16(b) show examples of director 

0.61 i 

I I 

-0.5 0 0.5 
5 

Figure 14. The director distribution in the homeotropic layer 
deformed by the parallel field calculated for ksb = 1.1 and 
g= 1. The values of U are 0, 0.8, 2.0, 3.0, 5.0 and 8.0 (in 
order from the lowest curvature to the highest). 

I 
-0.5 0 0.5 

5 
Figure 15. The director distribution of the tilted layer (p=  

0.5) in the magnetic field directed at the special angle 
(a = - 1.28828) for k,, = 0.4 and g = 1. The values of U 
are 0.05, 0.07, 0-09, 0.07 and 045 (in order from the 
highest curve to the lowest). Two curves present for U = 
0.07 illustrate the existence of the hysteresis. 

0.5 5 
-0.5 0 

Figure 16. The director distribution in the homeotropic layer 
( p  = 0) deformed by the oblique magnetic field (0: = 0.3). 
(a) k,, = 0.4 and g = 2, the values of U are 0.3, 0-5, 0.8, 
0.9, 1.0, 1.0, 1.1 and 1.2 (in order from the.highest curve 
to the lowest), two curves present for U = 1.0 illustrate 
the existence of the hysteresis; (b) k,, = 1.1 and g = 1, the 
values of U are 0, 0.5, 0 8 ,  1.0, 13, 2 0  and 3.0 (in order 
from the highest curve to the lowest). 

profiles in the homeotropic layer deformed by the 
oblique field. Deformation of the uniform distribution, 
existing in the layer at h = 0 if k,, is small, is almost 
symmetrical for low fields and discontinuously changes 
into asymmetrical deformation, figure 16 (a).  This change 
is accompanied by hysteresis. If ksb is sufficiently high, 
then the deformation of the initial linear profile is 
continuous. A strong curvature characterizes the 
resulting distribution, figure 16(b). In both cases the 
director distributions tend to the n 11 H states in the 
high field. 

Deformation of the tilted layer induced by the field 
parallel to the layer plates arises continuously. An almost 
symmetrical director distribution takes place for low k,, 
and finally the state nllH is achieved, figure 17(a). In 
case of sufficiently high ksb, the initial linear distribution 
is asymmetrically suppressed, figure 17 (b). 
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79 8 G. Derfel 

0.5 -0.5 0 
5 

Figure 17. The director distribution in the tilted layer ( p =  
0.1) deformed by the magnetic field parallel to the layer 
('3 = 0). (a) ksb = -0.1 and g = 1, the values of U are 0.5, 
0.8, 1.0. 1.5 and 3.0 (in order from the lowest curve to the 
highest): (b)  k,, = 1.1 and g = 1, the values of U are 0, 0.6, 
0.7 and 0.8 (in order from the highest slope to the lowest). 

4. Discussion 
In this paper, magnetic field induced deformations of 

a weakly anchored nematic layer with non-zero splay- 
bend elastic constant k,,, have been analysed. According 
to the Pergamenshchik [ 21 approach applied here, the 
director distribution function was chosen in a form of 
solution of the Euler-Lagrange equation (5). The general 
form of this solution was adopted. Minimization of the 
free energy function yields the required director profile 
Nz).  Summarizing, the presence of ksh # 0 manifests itself 
quantitatively and qualitatively. 

In the absence of the field, the weakly anchored layer 
has a uniform structure n 11 e if 

(31)  

In the opposite case, the structure is spontaneously 
distorted and the director distribution is described by 
the linear @(z) function. 

The deformed director distribution induced by the 
external field is fully asymmetric in general. In some 
special cases this distribution can be symmetric or 
antisymmetric, i.e. as described by the even or odd d(z) 
functions. The homeotropic layer satisfying the inequal- 
i ty  (31) remains undeformed in a perpendicular field 
until some threshold strength is reached. For negative 
or sufficiently low positive ksh, the deformation is sym- 
metrical and arises continuously. For k,, values which 
are sufficiently high, but still satisfy the inequality (31). 
the discontinuous transition to the state n 1 1  H occurs. 
For ksb values which do not satisfy the inequality (31). 
the initial spontaneous linear deformation is suppressed 

1 + g - 2ks,cOS2P > 0. 

by the field and disappears above another threshold. 
The properties of the planar layer are analogous. 

In the tilted layer the deformation has no threshold. 
even if H l e .  A field parallel to the surface alignment 
does not induce any deformation if the inequality (3  I ) 
is satisfied. In the opposite case, the linear director 
profile is strongly distorted. A sufficiently high ksb seems 
to favour a strong director curvature in the boundary 
regions in some geometries. 

The phenomena which do not occur if ksh = 0, are the 
most interesting. The hysteresis due to U z  < U ,  shown 
in figure 7 is the best example of such a distinguishing 
effect; this could be detected in sufficiently weakly 
anchored (or sufficiently thin) layers, homeotropic if 
ksb > 0 and planar in the opposite case. The continuously 
arising deformation, leading to rotation of the director 
if a = /3 # 0, is another effect suitable for experimental 
verification. The zero-field spontaneous linear director 
distribution and its field induced deformation could be 
detectable if 1 + g - 2k,, cos 28 < 0, i.e. if I k,,l is suffi- 
ciently high. The homeotropic layer would be useful if 
k,, > 0 and the planar layer in the opposite case. 

The procedure leading to the expressions for the 
thresholds (24), (27) and (29) is identical to the technique 
due to the method based on catastrophe theory (which 
was applied earlier, e.g. in [14] and [lS]), and to the 
similar approach applied in [ 61 to the present problem. 
In this method the deformation is approximately 
expressed in the form of some simple trial function, 
which should possess the essential qualitative features 
of the exact solution. Tn normal cases, when k,, = 0 and 
the functional of the free energy has a minimum, there 
is some free choice of the trial functions which lead to 
qualitatively proper and identical results. However in 
the present situation when k,, # 0, various trial functions 
create different effective free energy functions with vari- 
ous minima. Some of them may yield a description of 
the system which may be erroneous, not only quantitat- 
ively, but also qualitatively. Therefore, the exact solution 
of the Euler-Lagrange equation or its close approxi- 
mation should be adopted as the trial function. Here the 
solution is obtained from the equation derived by use 
of the one elastic constant approximation. Nevertheless, 
due to its proper qualitative features, it can be applied 
also in the general case. According to this assumption 
the threshold conditions (24). (27) and (29) can be 
generalized for k, = k,,/k,, # 1 

U ,  = ' cothU, (33) 
kb -k 2ksb 
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and 

u, = - tan U, 
kb - 2kSlJ 

(34) 

Appendix 
Equation ( 5 )  is integrated once to give 

6;’ + sin’ 6 = c’ (‘41 1 
where c is the integration constant. From equation ( A l )  
one obtains 

d6 
= +du 

(c2 - sin’ 6)”’ - 

As both the signs lead to equivalent results, the positive 
sign is chosen in the following. By means of a new 
variable y defined by 

sin8 = csiny (A3 1 
the integral of equation (A2) is obtained 

Two cases should be considered. 

(1) For c Q 1 the integration yields 

F(sin y, c) = u + c1 (‘45) 
where F(sin 7,  c )  is the incomplete elliptic integral of the 
first kind and c1 is another integration constant. 
Equation (A5) yields the most general solution of the 
problem, since the constants c and c1 are not specified. 
Their actual values should be found by minimizing the 
free energy of the layer. It is convenient to express the 
constant c ,  in terms of the angles p and a. For this 
purpose the quantity u,, is introduced, for which the 
angle 6 equals f i  - a. Therefore 

(A61 
where ylo is a suitable value of the variable y determined 
by c sin yo = sin ( p  - a). As a result 

c1 = F(sin yo, c) - uo 

F(sin y, c)  = u - u,, + F(sin yo, c) 

sin y = sn [u - u,, + F(sin yo, c), c ]  

(A7 1 

(A8 1 
where the Jacobian elliptic function sn [ 111 is intro- 
duced. According to addition theorems for the Jacobian 
functions, this expression takes the form 

The inversion of this function leads to 

sin? = [sn(u -u,,c)cn(F,c)dn(F,c) 

+ cn (u - uo, c) dn (u - u,,, c) sn (F, c)] 

x [ 1 - c? sn’ (u - uo, c) sn2 (F, c)]- ’  (A9) 
where two other Jacobian functions cn and dn appear 
and the abbreviation F = F(sin yo, c) is used. By means 

of equation (A3), one obtains finally 

sin 6 = [sn (u - uo, c) cos(p - a)(c’ - sin’.(P - cr))’/’ 

+ sin ( p  - a) cn (u - u,,, c )  dn (u 

x [ 1 - sin’(p - a) sn’ (u - u,,, c)] 

(2 )  For c B 1, integration of equation (A4) gives 

u,,, c)] 

(A10) 

1 
- F ( c  sin y, l/c) = u + c2 ( A l l )  
C 

where 

C 

The final expression, obtained in an analogous way, is 

sin 6 = [sn (c(u - u,,), l/c) 

x cos ( p  - a)( 1 - ( 1/c2) sin2 ( p  - a))’/’ 

+ sin ( p  - a) cn (c(u - u,,), l/c) dn (c(u - uo),  l/c)] 

x [ 1 - ( 1/c2) sin’ ( p  - a) cn’ (c(u - u,,), l/c)] ’ 
(A131 

The constant c in the above equations can be 
expressed by means of the derivative S,’, taken for u = u,, 

c2 = 6:’(u0) + sin2(a - p)  (A141 

or, if its value is smaller than 1, as the sine of the extreme 
angle 6, 

c = sin 6, (‘415) 
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